The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
A. Lendasse , E. de Bodt , V. Wertz , M. Verleysen
E.J.E.S.S., 14 1 (2000) 81-91
This article has been cited by the following article(s):
92 articles
Multi-decomposition in deep learning models for futures price prediction
Yuping Song, Jiefei Huang, Yang Xu, Jinrui Ruan and Min Zhu Expert Systems with Applications 246 123171 (2024) https://doi.org/10.1016/j.eswa.2024.123171
Ajla Kulaglic 1143 186 (2024) https://doi.org/10.1007/978-3-031-71694-2_15
Predicting stock price of construction companies using weighted ensemble learning
Xinyuan Song Heliyon 10 (11) e31604 (2024) https://doi.org/10.1016/j.heliyon.2024.e31604
A parallel hybrid neural networks model for forecasting returns with candlestick technical trading strategy
Min Zhu, Yu Guo and Yuping Song Expert Systems with Applications 255 124486 (2024) https://doi.org/10.1016/j.eswa.2024.124486
Optimisation-Enabled Transfer Learning Framework for Stock Market Prediction
Pankaj Rambhau Patil, Deepa Parasar and Shrikant Charhate Journal of Information & Knowledge Management 23 (02) (2024) https://doi.org/10.1142/S0219649224500138
Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction
Ritika Chopra, Gagan Deep Sharma and Vijay Pereira Technovation 135 103067 (2024) https://doi.org/10.1016/j.technovation.2024.103067
Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi–Sugeno–Kang Fuzzy System with Type-1 Non-Singleton Inputs
Gerardo Armando Hernández Castorena, Gerardo Maximiliano Méndez, Ismael López-Juárez, María Aracelia Alcorta García, Dulce Citlalli Martinez-Peon and Pascual Noradino Montes-Dorantes Mathematics 12 (13) 1976 (2024) https://doi.org/10.3390/math12131976
A spatiotemporal analysis approach for multidimensional assessment of renewable energy development in ASEAN countries
Qianqian Yuan, Yunqing Xu, Myat Su Han and Wen Wen Renewable Energy 237 121484 (2024) https://doi.org/10.1016/j.renene.2024.121484
Pankaj Rambhau Patil, Deepa Parasar and Shrikant Charhate 883 (2023) https://doi.org/10.1109/ICSCNA58489.2023.10370464
A new hybrid deep learning model for monthly oil prices forecasting
Keqin Guan and Xu Gong Energy Economics 128 107136 (2023) https://doi.org/10.1016/j.eneco.2023.107136
Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model
Mohammad Arashi and Mohammad Mahdi Rounaghi Future Business Journal 8 (1) (2022) https://doi.org/10.1186/s43093-022-00125-9
Wei Zhou, Xiaorui Xue and Yizhen Xu 92 (2022) https://doi.org/10.1145/3548636.3548650
A survey on machine learning models for financial time series forecasting
Yajiao Tang, Zhenyu Song, Yulin Zhu, Huaiyu Yuan, Maozhang Hou, Junkai Ji, Cheng Tang and Jianqiang Li Neurocomputing 512 363 (2022) https://doi.org/10.1016/j.neucom.2022.09.003
Recent Trends in Communication and Intelligent Systems
Rais Allauddin Mulla and Satish Saini Algorithms for Intelligent Systems, Recent Trends in Communication and Intelligent Systems 133 (2022) https://doi.org/10.1007/978-981-19-1324-2_15
Application of Markov Chain Techniques for Selecting Efficient Financial Stocks for Investment Portfolio Construction
Gabriel Kallah-Dagadu, Victor Apatu, Felix Okoe Mettle, et al. Journal of Applied Mathematics 2022 1 (2022) https://doi.org/10.1155/2022/2863302
Stock Price Prediction Using Predictive Error Compensation Wavelet Neural Networks
Ajla Kulaglic and Burak Berk Ustundag Computers, Materials & Continua 68 (3) 3577 (2021) https://doi.org/10.32604/cmc.2021.014768
Shuyan Liu and Yue Chen 168 (2021) https://doi.org/10.1145/3498851.3498932
Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda
Ritika Chopra and Gagan Deep Sharma Journal of Risk and Financial Management 14 (11) 526 (2021) https://doi.org/10.3390/jrfm14110526
Shuyan Liu and Yue Chen 1047 (2021) https://doi.org/10.1109/ICDMW53433.2021.00136
Predicting stock returns of Tehran exchange using LSTM neural network and feature engineering technique
Sina Dami and Mohammad Esterabi Multimedia Tools and Applications 80 (13) 19947 (2021) https://doi.org/10.1007/s11042-021-10778-3
Combining Deep Learning and Multiresolution Analysis for Stock Market Forecasting
Khaled A. Althelaya, Salahadin A. Mohammed and El-Sayed M. El-Alfy IEEE Access 9 13099 (2021) https://doi.org/10.1109/ACCESS.2021.3051872
Vijeth Rai, Abhishek Sharma, Pornthep Preechayasomboon and Eric Rombokas 939 (2020) https://doi.org/10.1109/BioRob49111.2020.9224435
Md. Arif Istiake Sunny, Mirza Mohd Shahriar Maswood and Abdullah G. Alharbi 87 (2020) https://doi.org/10.1109/NILES50944.2020.9257950
Forecasting violent events in the Middle East and North Africa using the Hidden Markov Model and regularized autoregressive models
KSM Tozammel Hossain, Shuyang Gao, Brendan Kennedy, Aram Galstyan and Prem Natarajan The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 17 (3) 269 (2020) https://doi.org/10.1177/1548512918814698
Classification of intraday S&P500 returns with a Random Forest
Christoph Lohrmann and Pasi Luukka International Journal of Forecasting 35 (1) 390 (2019) https://doi.org/10.1016/j.ijforecast.2018.08.004
Applied Informatics
Duc Huu Dat Nguyen, Loc Phuoc Tran and Vu Nguyen Communications in Computer and Information Science, Applied Informatics 1051 199 (2019) https://doi.org/10.1007/978-3-030-32475-9_15
Sena Seneviratne, Sanjeeva Witharana and Adel N Toosi 1 (2019) https://doi.org/10.1109/ICASET.2019.8714535
Predictability of Financial Markets in ASEAN Countries using Machine Learning Techniques
Dulani Jayasuriya SSRN Electronic Journal (2019) https://doi.org/10.2139/ssrn.3318051
DO THE FAMA AND FRENCH FIVE-FACTOR MODEL FORECAST WELL USING ANN?
Muhammad Naveed Jan and Usman Ayub Journal of Business Economics and Management 20 (1) 168 (2019) https://doi.org/10.3846/jbem.2019.8250
ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
Yujin Baek and Ha Young Kim Expert Systems with Applications 113 457 (2018) https://doi.org/10.1016/j.eswa.2018.07.019
Khaled A. Althelaya, El-Sayed M. El-Alfy and Salahadin Mohammed 151 (2018) https://doi.org/10.1109/IACS.2018.8355458
Return scaling cross-correlation forecasting by stochastic time strength neural network in financial market dynamics
Haiyan Mo and Jun Wang Soft Computing 22 (9) 3097 (2018) https://doi.org/10.1007/s00500-017-2564-0
Forecasting Financial Time Series with Grammar‐Guided Feature Generation
Anthony Mihirana de Silva, Richard I. A. Davis, Syed A. Pasha and Philip H. W. Leong Computational Intelligence 33 (2) 241 (2017) https://doi.org/10.1111/coin.12083
Stock prediction using deep learning
Ritika Singh and Shashi Srivastava Multimedia Tools and Applications 76 (18) 18569 (2017) https://doi.org/10.1007/s11042-016-4159-7
Exponent back propagation neural network forecasting for financial cross-correlation relationship
Haiyan Mo, Jun Wang and Hongli Niu Expert Systems with Applications 53 106 (2016) https://doi.org/10.1016/j.eswa.2015.12.045
Prediction of stock price movement based on daily high prices
Marija Gorenc Novak and Dejan Velušček Quantitative Finance 16 (5) 793 (2016) https://doi.org/10.1080/14697688.2015.1070960
Modelling the Impact of Global Financial Crisis on the Indian Stock Market through GARCH Models
Shreya Mathur, Varun Chotia and N.V.M. Rao Asia-Pacific Journal of Management Research and Innovation 12 (1) 11 (2016) https://doi.org/10.1177/2319510X16650056
Grammar-Based Feature Generation for Time-Series Prediction
Anthony Mihirana De Silva and Philip H. W. Leong SpringerBriefs in Applied Sciences and Technology, Grammar-Based Feature Generation for Time-Series Prediction 51 (2015) https://doi.org/10.1007/978-981-287-411-5_5
A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems
María de los Angeles Hernandez, Patricia Melin, Gerardo M. Méndez, Oscar Castillo and Ismael López-Juarez Soft Computing 19 (3) 661 (2015) https://doi.org/10.1007/s00500-014-1287-8
Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks
Jie Wang and Jun Wang Neurocomputing 156 68 (2015) https://doi.org/10.1016/j.neucom.2014.12.084
Handbook of Financial Econometrics and Statistics
Kenneth D. Lawrence, Gary Kleinman and Sheila M. Lawrence Handbook of Financial Econometrics and Statistics 2445 (2015) https://doi.org/10.1007/978-1-4614-7750-1_88
Grammar-Based Feature Generation for Time-Series Prediction
Anthony Mihirana De Silva and Philip H. W. Leong SpringerBriefs in Applied Sciences and Technology, Grammar-Based Feature Generation for Time-Series Prediction 63 (2015) https://doi.org/10.1007/978-981-287-411-5_6
Modeling intraday information in financial markets with the scatter search metaheuristic
Carlos Gomes da Silva International Journal of Financial Engineering 02 (02) 1550021 (2015) https://doi.org/10.1142/S2424786315500218
The performance of immune-based neural network with financial time series prediction
Dhiya Al-Jumeily, Abir J. Hussain and Duc Pham Cogent Engineering 2 (1) 985005 (2015) https://doi.org/10.1080/23311916.2014.985005
Recent Advances on Soft Computing and Data Mining
Noor Aida Husaini, Rozaida Ghazali, Lokman Hakim Ismail and Tutut Herawan Advances in Intelligent Systems and Computing, Recent Advances on Soft Computing and Data Mining 287 11 (2014) https://doi.org/10.1007/978-3-319-07692-8_2
Gary D. Boetticher 231 (2014) https://doi.org/10.1109/CIFEr.2014.6924078
An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction
Tuanhung Dao and Hyunchul Ahn Journal of Intelligence and Information Systems 20 (4) 43 (2014) https://doi.org/10.13088/jiis.2014.20.4.43
Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain
Yonghui Dai, Dongmei Han and Weihui Dai The Scientific World Journal 2014 1 (2014) https://doi.org/10.1155/2014/124523
Volatility Degree Forecasting of Stock Market by Stochastic Time Strength Neural Network
Haiyan Mo and Jun Wang Mathematical Problems in Engineering 2013 1 (2013) https://doi.org/10.1155/2013/436795
Financial time series forecasting using LPP and SVM optimized by PSO
Guo Zhiqiang, Wang Huaiqing and Liu Quan Soft Computing 17 (5) 805 (2013) https://doi.org/10.1007/s00500-012-0953-y
Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic systems
Gerardo M. Méndez and Maria de los Angeles Hernández Information Sciences 220 149 (2013) https://doi.org/10.1016/j.ins.2012.01.024
A Bayesian regularized artificial neural network for stock market forecasting
Jonathan L. Ticknor Expert Systems with Applications 40 (14) 5501 (2013) https://doi.org/10.1016/j.eswa.2013.04.013
Forecasting OMX Vilnius Stock Index – a Neural Network Approach
Audrius Dzikevičius and Neringa Stabužytė Verslas: teorija ir praktika 13 (4) 324 (2012) https://doi.org/10.3846/btp.2012.34
Operations Management
Martin Wallace Operations Management 152 (2011) https://doi.org/10.1201/b12879-8
Gerardo M. Mendez, Maria de los Angeles Hernandez, David S. Gonzalez and Ismael Lopez-Juarez 417 (2011) https://doi.org/10.1109/HIS.2011.6122142
Task profiling model for load profile prediction
Sena Seneviratne and David C. Levy Future Generation Computer Systems 27 (3) 245 (2011) https://doi.org/10.1016/j.future.2010.09.004
A study on the medium-term forecasting using exogenous variable selection of the extra-virgin olive oil with soft computing methods
Antonio J. Rivera, Pedro Pérez-Recuerda, María Dolores Pérez-Godoy, et al. Applied Intelligence 34 (3) 331 (2011) https://doi.org/10.1007/s10489-011-0284-1
Modeling and Prediction of the CNY Exchange Rates Using RBF Neural Networks versus GARCH Models
Zhao Cheng Liu, Xi Yu Liu and Zi Ran Zheng Applied Mechanics and Materials 39 375 (2010) https://doi.org/10.4028/www.scientific.net/AMM.39.375
Forecasting classification of operating performance of enterprises by probabilistic neural network
Jui-Ching Huang and Wen-Tsao Pan Journal of Information and Optimization Sciences 31 (2) 333 (2010) https://doi.org/10.1080/02522667.2010.10699963
Real Life Applications of Soft Computing
Real Life Applications of Soft Computing 597 (2010) https://doi.org/10.1201/EBK1439822876-b1
Hui Xiao-feng and Li Song-song 1124 (2010) https://doi.org/10.1109/ICMSE.2010.5719937
Incorporating the Markov chain concept into fuzzy stochastic prediction of stock indexes
Yi-Fan Wang, Shihmin Cheng and Mei-Hua Hsu Applied Soft Computing 10 (2) 613 (2010) https://doi.org/10.1016/j.asoc.2009.08.028
Intelligence for Nonlinear Dynamics and Synchronisation
Angelos T. Vouldis Atlantis Computational Intelligence Systems, Intelligence for Nonlinear Dynamics and Synchronisation 3 209 (2010) https://doi.org/10.2991/978-94-91216-30-5_7
Applying the General Regression Neural Network to Forecast Stock Closing Price
Albert Kuo-Chung Mei Journal of Statistics and Management Systems 13 (3) 639 (2010) https://doi.org/10.1080/09720510.2010.10701493
Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods
Gerardo M. Méndez and M. de los Angeles Hernandez Information Sciences 179 (13) 2146 (2009) https://doi.org/10.1016/j.ins.2008.08.008
Li-ping Qin and Mei Bai 1511 (2009) https://doi.org/10.1109/ICMSE.2009.5317911
Surveying stock market forecasting techniques – Part II: Soft computing methods
George S. Atsalakis and Kimon P. Valavanis Expert Systems with Applications 36 (3) 5932 (2009) https://doi.org/10.1016/j.eswa.2008.07.006
Stock price prediction using neural networks with RasID‐GA
Shingo Mabu, Yan Chen, Dongkyu Sohn, Kaoru Shimada and Kotaro Hirasawa IEEJ Transactions on Electrical and Electronic Engineering 4 (3) 392 (2009) https://doi.org/10.1002/tee.20423
Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition
Gerardo M. Mendez and Angeles Hernandez Studies in Computational Intelligence, Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition 256 157 (2009) https://doi.org/10.1007/978-3-642-04516-5_10
Zhaocheng Liu, Ziran Zheng, Xiyu Liu and Gongxi Wang 38 (2009) https://doi.org/10.1109/BIFE.2009.18
Gerardo M. Mendez and Angeles Hernandez 5271 575 (2008) https://doi.org/10.1007/978-3-540-87656-4_71
Wen-tsao Pan and Wei-yuan Lin 134 (2008) https://doi.org/10.1109/ICMSE.2008.4668906
Porntip Visetsripong, Pitikhate Sooraksa, Pramote Luenam and Watchareeporn Chaimongkol 659 (2008) https://doi.org/10.1109/SICE.2008.4654738
Etsushi Ohkawa, Yan Chen, Shingo Mabu, Kaoru Shimada and Kotaro Hirasawa 1231 (2008) https://doi.org/10.1109/SICE.2008.4654846
Use of probabilistic neural network to construct early warning model for business financial distress
Wen-Tsao Pan Journal of Statistics and Management Systems 11 (4) 749 (2008) https://doi.org/10.1080/09720510.2008.10701340
Time series forecasting with a non-linear model and the scatter search meta-heuristic
Carlos Gomes da Silva Information Sciences 178 (16) 3288 (2008) https://doi.org/10.1016/j.ins.2008.03.024
Exploiting stock data: a survey of state of the art computational techniques aimed at producing beliefs regarding investment portfolios
Mario Linares Vásquez, Diego Fernando Hernández Losada and Fabio González Osorio Ingeniería e Investigación 28 (1) 105 (2008) https://doi.org/10.15446/ing.investig.v28n1.14873
Modelling and Prediction of the MXNUSD Exchange Rate Using Interval Singleton Type-2 Fuzzy Logic Systems [Application Notes]
Maria De Los Angeles Hernandez M. and Gerardo M. Mendez IEEE Computational Intelligence Magazine 2 (1) 5 (2007) https://doi.org/10.1109/MCI.2007.357189
Time series prediction competition: The CATS benchmark
Amaury Lendasse, Erkki Oja, Olli Simula and Michel Verleysen Neurocomputing 70 (13-15) 2325 (2007) https://doi.org/10.1016/j.neucom.2007.02.013
M. M. Rezaei Yousefi, M. Mirmomeni and C. Lucas 1121 (2007) https://doi.org/10.1109/IJCNN.2007.4371115
Zhiguo Bao, Shigo Mabu, Kotaro Hirasawa and Jinglu Hu 1569 (2007) https://doi.org/10.1109/SICE.2007.4421233
Artificial Intelligence and Soft Computing – ICAISC 2006
Šarūnas Raudys and Indre Zliobaite Lecture Notes in Computer Science, Artificial Intelligence and Soft Computing – ICAISC 2006 4029 653 (2006) https://doi.org/10.1007/11785231_68
M. de los Angeles Hernandez Medina and G.M. Mendez 2305 (2006) https://doi.org/10.1109/FUZZY.2006.1682020
Y. Izumi, T. Yamaguchi, S. Mabu, K. Hirasawa and Jingle Hu 2362 (2006) https://doi.org/10.1109/CEC.2006.1688600
Applications and Innovations in Intelligent Systems XIII
Niall O’Connor and Michael G. Madden Applications and Innovations in Intelligent Systems XIII 64 (2006) https://doi.org/10.1007/1-84628-224-1_6
S.C. Chan, W.Y. Lau and C.H. Leung 4252 (2006) https://doi.org/10.1109/ISCAS.2006.1693568
A neural network approach to predicting stock exchange movements using external factors
Niall O’Connor and Michael G. Madden Knowledge-Based Systems 19 (5) 371 (2006) https://doi.org/10.1016/j.knosys.2005.11.015
T. Yamashita, K. Hirasawa and Jinglu Hu 4 2544 (2005) https://doi.org/10.1109/IJCNN.2005.1556303
Knowledge-Based Intelligent Information and Engineering Systems
Takashi Yamashita, Kotaro Hirasawa and Jinglu Hu Lecture Notes in Computer Science, Knowledge-Based Intelligent Information and Engineering Systems 3681 1 (2005) https://doi.org/10.1007/11552413_1
Lingyun Yang, I. Foster and J.M. Schopf 9 (2003) https://doi.org/10.1109/IPDPS.2003.1213129
Forecasting electricity consumption using nonlinear projection and self-organizing maps
A. Lendasse, J. Lee, V. Wertz and M. Verleysen Neurocomputing 48 (1-4) 299 (2002) https://doi.org/10.1016/S0925-2312(01)00646-4
A. Lendasse, M. Cottrell, V. Wertz and M. Verleysen 3684 (2002) https://doi.org/10.1109/ACC.2002.1024500